Hippocampal damage after intra-amygdala kainic acid-induced status epilepticus and seizure preconditioning-mediated neuroprotection in SJL mice.
نویسندگان
چکیده
Exposure of the brain to a stressful stimulus that is sub-threshold for permanent injury can temporarily protect against cell death during a subsequent and otherwise damaging insult. One or more brief, non-harmful seizure episode(s) (seizure preconditioning) can dramatically reduce hippocampal damage when given prior to status epilepticus (epileptic tolerance). We recently reported that status epilepticus-induced hippocampal damage in C57BL/6 mice could be reduced by approximately 50% when preceded 24h earlier by a brief, non-injurious generalized seizure induced by 15mg/kg systemic kainic acid (KA). Since other mouse strains might display different vulnerability to either seizure preconditioning or status epilepticus, we investigated whether epileptic tolerance could be acquired in another strain. SJL mice, reported to display greater seizure sensitivity to systemic KA, received intra-amygdala microinjection of KA to trigger status epilepticus. Intracerebral recordings confirmed evoked seizures involved the ipsilateral hippocampus. Status epilepticus produced hippocampal damage which mainly affected the ipsilateral CA3 and hilus; a pattern similar to C57BL/6 mice. The damage extended through the full rostro-caudal extent of the hippocampal formation. Seizure preconditioning using 20mg/kg systemic KA, but not 15mg/kg, significantly reduced hippocampal damage after status epilepticus by 37% in the dorsal hippocampus and by 65% in the ventral hippocampus. These studies suggest status epilepticus induced by intra-amygdala KA in SJL mice models aspects of the pathophysiology of human mesial temporal sclerosis. Moreover, seizure preconditioning effectively produces neuroprotection in SJL mice, further establishing epileptic tolerance as a conserved endogenous neuroprotection paradigm.
منابع مشابه
Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice.
Mesial temporal lobe epilepsy is the most common, intractable seizure disorder in adults. It is associated with an asymmetric pattern of hippocampal neuron loss within the endfolium (hilus and CA3) and CA1, with limited pathology in extra-hippocampal regions. We previously developed a model of focally-evoked seizure-induced neuronal death using intra-amygdala kainic acid (KA) microinjection and...
متن کاملBi-lateral changes to hippocampal cholesterol levels during epileptogenesis and in chronic epilepsy following focal-onset status epilepticus in mice.
Brain cholesterol homeostasis has been shown to be disrupted in neurodegenerative conditions such as Alzheimer's and Huntington's diseases. Investigations in animal models of seizure-induced brain injury suggest that brain cholesterol levels are altered by prolonged seizures (status epilepticus) and are a feature of the pathophysiology of temporal lobe epilepsy. The present study measured hippo...
متن کاملDeletion of the BH3-only protein Noxa alters electrographic seizures but does not protect against hippocampal damage after status epilepticus in mice
Several members of the Bcl-2 gene family are dysregulated in human temporal lobe epilepsy and animal studies show that genetic deletion of some of these proteins influence electrographic seizure responses to chemoconvulsants and associated brain damage. The BH3-only proteins form a subgroup comprising direct activators of Bax-Bak that are potently proapoptotic and a number of weaker proapoptoti...
متن کاملThe protective effect of carvacrol on kainic acid-induced model of temporal lobe epilepsy in male rat
Background and Objective: Temporal lobe epilepsy (TLE) is a chronic neurological disorder with spontaneous recurrent seizures and abnormal intracranial waves. Since the role of oxidative stress in the occurrence of epilepsy is inevitable, it seems that the use of antioxidants can prevent some of the complications resulting from this disease. This study was designed to assess the protective effe...
متن کاملResistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling.
Seizures in adult rats result in long-term deficits in learning and memory, as well as an enhanced susceptibility to further seizures. In contrast, fewer lasting changes have been found following seizures in rats younger than 20 days old. This age-dependency could be due to differing amounts of hippocampal neuronal damage produced by seizures at different ages. To determine if there is an early...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Epilepsy research
دوره 88 2-3 شماره
صفحات -
تاریخ انتشار 2010